Math 10A Worksheet, Midterm I Review; Friday, 7/6/2018 Instructor name: Roy Zhao

Derivatives

Chain Rule

- 1. Find the derivative of $f(x) = \cos^3(\frac{1}{3x+1})$.
- 2. Find the derivative of $f(x) = x^5 \cos(3x)$.
- 3. Find the derivative of $\sqrt{\sin(2x)}$.
- 4. Find the derivative of $\sin(\sqrt{x})$.
- 5. Find the derivative of $\cot(3x^2)$.

Inverse Functions

- 6. Find the derivative of $\operatorname{arccot}(x)$.
- 7. Find the derivative of $\arcsin(x)$.
- 8. Let $f(x) = xe^x$ and let g be the inverse function of f. Given that f(1) = e, find g'(e).
- 9. Let $f(x) = x^5 + 4x^3$ and let g be the inverse function of f. Given that f(1) = 5, find g'(5).
- 10. Let $f(x) = x^5 + x + 1$ and let g be the inverse function of f. Find the derivative of g at (3, 1).

Implicit Differentiation

- 11. Find the derivative of the function $y^2(6-x) = x^3$ at (3,3).
- 12. Find $\frac{dy}{dx}$ given that $\frac{1}{y} + \frac{1}{x^2} = 1$.

13. Let $y^2 = x^2(x-1)$. At what points is $\frac{dy}{dx}$ not defined?

- 14. Find $\frac{dy}{dx}$ if $\ln(xy) = e^y$.
- 15. Find when the curve $x^4 = 2x^2 y^2$ has a horizontal derivative.

L'Hopital's Rule

16. Find $\lim_{x \to \infty} \sqrt{2x+1} - \sqrt{x+1}$. 17. Find $\lim_{x \to \infty} \frac{x}{\sqrt{x^2-1}}$. 18. Find $\lim_{x \to \infty} x^{1/x}$. 19. Find $\lim_{x \to 0^+} x^x$. 20. Find $\lim_{x \to 0} \frac{\cos(x) - 1 + \sin(x)^2/2}{x^4}$.

Application

Optimization

- 21. Find the area of the smallest triangle formed by the x axis, y axis, and a line that goes through the point (1, 1).
- 22. Find the largest rectangle that can be inscribed into a semicircle of radius 2 so that one side of the rectangle is part of the diameter of the semicircle.
- 23. Find the point on the curve $y = 1 \sqrt{x}$ closest to (1, 1).
- 24. A rectangle is inscribed under the curve $\sin x$ for $0 \le x \le \pi$. This rectangle has two vertices on the curve and one side on the x axis. What is the maximum possible area of such a rectangle.
- 25. What is the point on $y = e^x$ closest to (1, 0)?

Related Rates

- 26. A ball of light is bobbing up and down and whose position is given at a time t by $4 + \sin(2t)$. A man who is 2m tall is standing 10m away. How fast is the length of his shadow changing when t = 0?
- 27. A conical cup that is 6cm wide at the top and 5cm tall is filled with water is punctured at the bottom and water is coming out at a rate of $10^{-6}\pi m^3/s$. Initially, the cup is filled How fast is the height of the water changing when the height is 3cm?
- 28. Sand is being dumped in a conical pile whose radius and height always remain the same. If the sand is being dumped in at a rate of $2\pi m^3/hr$, how fast is the height of the sand changing when the pile is 5cm tall?

- 29. A kite is flying at a current altitude of 100m. The kite slowly flies further and further away as the string length increases at a rate of 2cm/s. Assuming the altitude does not change, how fast horizontally is the kite moving when the angle the string forms with the ground is $\pi/4$?
- 30. A ladder 13m tall is lying against a wall. The bottom of the ladder is pulled out at a rate of 10cm/s. How fast is the area of the triangle formed by the ladder, wall, and floor changing when the bottom of the ladder is 5m away from the wall?

Taylor Series

- 31. Use the third order approximation to find $\sin(0.5)$.
- 32. Approximate $\sqrt{99}$ using a quadratic regression.
- 33. Use the second order approximation to find $\ln 1.01$.
- 34. Use the second order approximation to $\sqrt[3]{8.1}$.
- 35. Use the quintic order approximation to find e.

Newton's Method

- 36. Use Newton's method once to approximate $\sqrt[3]{8.1}$.
- 37. Approximate $\sqrt{99}$ using Newton's method once.
- 38. Find the critical points of $g(x) = \sin(x) x^2$
- 39. Find the unique solution to $(\pi 2x)\cos(x) = 2\sin(x)$ on the interval [0, 1] using Newton's method with an initial guess of $x = \frac{\pi}{4}$.
- 40. Find when $\cos(x) = x$ using Newton's method and an initial guess of $x = \frac{\pi}{6}$.

Functions

Domain/Range

- 41. Find the domain of $y = \sqrt{9 (2x + 3)^2}$.
- 42. Find the domain of $y = \frac{1}{\sqrt{3-x}}$.
- 43. Find the domain and range of $2 \arccos(3x+2)$.
- 44. Find the domain of $\frac{\ln(x+3)}{\sqrt{2-x}}$.

45. Find the domain of
$$\sqrt{\frac{3-x}{1-x}}$$

Inverse Functions

- 46. Find the inverse of $f(x) = \frac{-2}{x} 1$.
- 47. Find the inverse of $\frac{4+\sqrt{3x}}{5}$.
- 48. Find the inverse to x^2 on $(-\infty, 0]$.
- 49. Find the inverse to e^{2x+3} .
- 50. Find the inverse to $-\sqrt{\ln x}$.

Graphing

51. Sketch the graph of $f(x) = \frac{x}{x^2 + 1}$. 52. Sketch the graph of $f(x) = x + \frac{1}{x - 1}$. 53. Sketch the graph of $f(x) = 3 - 15x - 6x^2 + x^3$. 54. Sketch the graph of $f(x) = \frac{x - 1}{x + 1}$. 55. Sketch the graph of $f(x) = e^x + 2e^{-x}$.

1 True/False

56. Tru	e False	You can tell what the domain and range of an inverse function is only from the domain and range of the original function
57. Tru	e False	The horizontal line test tells us whether a function is injective or sur- jective.
58. Tru	e False	The range of e^x is $[0,\infty)$.
59. Tru	e False	If $\lim_{x\to 0} f(x)$ exists, then $\lim_{x\to 0} f(x) = f(0)$.
60. Tru	e False	Extrema of a function must occur when the derivative is 0, when it doesn't exist, or at the endpoints.
61. Tru	e False	The expression 0^{∞} is an indeterminate.
62. Tru	e False	The continuity law for subtraction follows from the limit law for sub- traction.
63. Tru	e False	The continuity of a constant function follows from limit laws.

64. True	False	The continuity law for rational functions follows only from the limit laws for ratios.
65. True	False	If f is not continuous at $x = c$, then f is not differentiable at $x = c$.
66. True	False	We can use the power rule to find the derivative of x^x .